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LETTER TO THE EDITOR 

Role of fluctuations in viscous fingering and dendritic crystal 
growth: a noise-driven model with non-periodic sidebranching 
and no threshold for onset 

Johann Nittmannt and H Eugene Stanley$ 
f Dowell Schlumberger, 42003 St Etienne, France 
$ Center for Polymer Studies and Department of Physics, Boston University, Boston, MA 
02215, USA 

Received 13 July 1987 

Abstract. A noise-driven model is developed to describe the role of fluctuations in side- 
branch phenomena in growth patterns for the fluid displacement problem and for dendritic 
crystal growth. Simulation results are compared with recent experiments on NH,Br den- 
drites. It is found that the R M S  sidebranch amplitude is an exponential function of distance 
from the tip, with no apparent onset threshold. Moreover, the sidebranches are non-periodic 
(at all distances from the tip) with apparently random variations in amplitude. 

What is the physical mechanism whereby sidebranches ‘spontaneorrsly’ appear a short 
distance behind the growing tip of a dendritic form? For generations, this question 
has fascinated scientists in a variety of fields, ranging from metallurgy and crystal 
growth on the one hand to botany and embryology on the other. Recently interest has 
focused on extremely simple systems that spontaneously develop sidebranches. I t  has 
been found that, when a low-viscosity fluid displaces a high-viscosity anisotropic fluid 
under pressure, a sidebranch pattern develops that resembles dendritic crystal growth. 
For example, Buka et a1 [ l ]  use air to displace a viscous solution of a nematic liquid 
crystal. The anisotropy can also be in the medium itself. Horvath er a1 [ 2 ]  have shown 
that a single scratch in one wall of the confining Hele-Shaw cell is sufficient to produce 
a dendritic pattern. Similarly, Ben-Jacob et a1 [ 3 ]  find dendritic fluid patterns when 
they scratch a triangular lattice onto the cell. Most surprising, perhaps, is the observa- 
tion of Couder et a f  [4] that dendritic growth patterns can occur when the anisotropy 
is provided by a simple bubble of air on the tip of the growing viscous finger. Can 
these similarities between diverse systems be understood in terms of underlying physical 
principles common to all? Here we tentatively suggest a physical model that seems 
to account for such sidebranch phenomena. 

Although fluid displacement phenomena are striking, a larger number of quantitative 
results is known for dendritic crystal growth. Hence we shall focus attention on the 
latter. In paiticular, Dougherty et a1 [ 5 ]  have recently made a detailed analysis of 
photographs of growing NH4Br dendrites, taken at 20s intervals. They have found 
three surprising results: (i) sidebranch positions are non-periodic at any distance from 
the tip, with almost random variations in both phase and amplitude, (ii) sidebranches 
on opposite sides of the dendrite are essentially uncorrelated in position and length 
and (iii) the sidebranch amplitude is an exponential function of distance from the tip, 
with no apparent onset threshold distance. 
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How can we understand these new experimental facts? Although recent theoretical 
work has been remarkably successful in explaining many aspects of dendrite growth 
[6,7], an explanation of random sidebranching phenomena has been elusive in part, 
perhaps, because of the difficulty of incorporating in these theories the subtle effects 
of fluctuations (‘noise’). Indeed, some of the best theories [8- 113 predict sidebranching 
that is symmetric and almost perfectly periodic. The model we develop here is 
essentially the complement of these recent theories and is based entirely on fluctuation 
phenomena; the resulting patterns can be said to be ‘noise-driven’. 

Growth of a dendrite from solution is controlled by the random diffusion of solute 
toward the growing dendrite. In the limit of small Peclet number, the diffusion equation 
reduces to the Laplace equation. The Laplace equation for a system with an interface 
not constant with time (the growing dendrite) brings to mind the noise-dominated 
diffusion-limited aggregation model ( DLA) [ 121. However, dendrites do not resemble 
DLA patterns which are much too chaotic in appearance, with no obvious anisotropyt. 

We discuss here a related model whose asymptotic structure does resemble the 
patterns found experimentally. Our starting point is the observation that even the 
tiniest amount of anisotropy becomes magnified as the mass M of a cluster increases 
[ 121. For example, the weak anisotropy of the underlying lattice structure can become 
so amplified that clusters of 4 x  lo6 particles grown on a square lattice take on the 
appearance of a Swiss cross (cf figure 15 of [12]). A real dendrite has a mass of 
roughly 10l6 particles; one cannot generate such clusters on a computer, but there is 
a computational trick-termed noise reduction-that speeds the convergence of the 
pattern toward its asymptotic ‘infinite mass’ limit [ 13-16]. We choose boundary 
conditions (figure 1) corresponding to those of the experimental setup: a long rec- 
tangular L x L’ cell oriented parallel to the x axis of an xy coordinate system (0 < x < L 
and O<y < L’, with L >> L’) .  The chemical potential 4(x,  y )  has the values 4(x,  y = 

L f ) = 4 ( x , y = 0 ) = 1 - x / L ,  4 ( O , y ) = 1 , 4 ( L , y ) = O , a n d d ( x , y ) = l  forallpoints(x,y) 
belonging to the cluster. At time zero, a single seed particle is placed at (x  = 0, y = L ’ / 2 ) ,  
and the Laplace equation V24(x ,y )=0  is solved numerically with the boundary 

Figure 1. Geometry and boundary conditions of the present model 

t A critical binary mixture exhibits large concentration fluctuations. Near the growing dendrite there are 
also large concentration fluctuations (roughtly *lo5 NH,Br molecule pm-’). Critical mixtures are described 
by the Ising model (or +4 field theory) which exhibits fluctuations on all length scales from the microscopic 
scale of the lattice constant a. up to the macroscopic scale of the correlation length 6; [ -+CO as E = 
( T -  T,)/ T,-r 0. Slslng- (o&-”m where Q(-ao)  is a critical amplitude and ~ , ~ , ~ ~ ( - 0 . 6 )  is a critical exponent 
depending only on the system dimension d. Anisotropic DLA has fluctuations (e.g. holes) on all sizes from 
a. to the scale of a ‘finger width’ SDLA; SDLA -+ 00 as E 1/ M -+ 0. SDLA - & , - ” D L A  where to( =ao) and 
the inverse fractal dimension of DLA, vDLA( =0.6), depends on d. 
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conditions just given. Each of the N perimeter sites i is assigned a normalised growth 
probability p i  which is proportional to V4. The unit interval is partitioned into N 
subintervals, each of length p i ,  which are in one-to-one correspondence with the 
perimeter sites i. A random number is drawn from the interval [0,1] and identified 
with the ‘choice’ of a perimeter site at which growth could next occur. However, 
instead of allowing growth to occur, a counter associated with that perimeter site is 
incremented by unity. A second random number is drawn and the process repeated 
until one of the N counters reaches a preset threshold value s. The special case s = I 
reduces to the conventional DLA model?. The fractal dimension df is independent of 
s for all jn i te  values of s, but the computational power gained through the use of 
noise reduction is enormous. The anisotropic patterns found for huge DLA clusters 
[12] are reproduced in much less computer time for clusters of smaller size [14-161. 
Similarly for the Eden model, previous s = 1 results achieved using immense computer 
effort [17] have been reproduced and improved with much smaller systems using noise 
reduction ( s >  1) [18]. 

The patterns we obtained (figure 2) with noise-reduced DLA resemble the experi- 
ments of [ 5 ] .  The details of the patterns we obtain can be ‘fine tuned if we introduce 
slight variations of the original DLA model, as follows. 

Figure 2. Comparison between ( a )  experimental dendrite of [ 5 ]  and ( b )  typical simulation 
pattern with q = I ,  U = 0.01, s = 200, M = 4000 and boundary conditions that alternate 
between [)LA and C)RM ( k  = I = 1 ). We can vary the model parameters over a modest range 
and still obtain patterns that resemble the experiments of  [ 5 ] .  

t As s increases, the growth at the next step-although sri l l  random-corresponds with better accuracy to 
the ‘Darcy law’ (linear response) solution of the Laplace equation. For example, suppose the seed of a 
cluster were a large disc-shaped object. Then for s = 1 subsequent growth would resemble a forest of trees 
growing off the surface of the disc, while for infinite s the disc would grow into a larger disc. For a very 
large but finite value of s, the disc would initially grow into a larger disc, and then would undergo tip 
splitting. The fractal dimension d, would start at d, = 2 but would eventually cross over to that of the forest 
of trees. 
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(a )  Boundary conditions on growth. A DLA cluster grows when a walker steps on 
any perimeter site i (then i becomes a cluster site). For the dielectric breakdown model 
( D B M )  [19], the random walker must actually step on a cluster site in order to grow 
(then the last visited perimeter site becomes a cluster site). If we solve the Laplace 
equation directly instead of using random walkers, then D B M  boundary conditions 
imply setting the potential 4 = 1 on the cluster sites, while DLA boundary conditions 
imply 4 = 1 on the perimeter sites as well. Which boundary conditions on growth to 
use is an open question. Indeed, real growth should probably be intermediate between 
the extremes of DLA and D B M .  Accordingly, we explored the consequences of growth 
for which k sites were added using [)LA boundary conditions, followed by I sites using 
DBM boundary conditions. Good patterns were obtained for many choices, including 
the simplest case k = I = 1. 

(b)  Surface tension. We found that the effect of tuning a surface tension parameter 
(T is to thicken the sidebranches and to round the sharper points of the pattern, since 
the potential 41F on the interface is not constant ( 4  = 4,J but changes with the radius 
of curvature R,: 41F= 4 0 - a / R c .  We calculated R, using a variation of the Vicsek 
form [20]. We increase the growth probability for site i in proportion to the number 
of cluster sites inside a small box centred about site i, e.g. for a tiny 3 x 3 box centred 
on each cluster site, we find l / R L = ( 5 - ” ) / 4 ,  where N N  denotes the number of 
occupied neighbours of the central cluster site. 

A typical result for a mass of 4000 particles is shown in figure 2 ( h ) .  After each 
333 particles are added, a contour is drawn. Our findings are as follows. 

(i) It is apparent from figure 2 that the distance between successive tip positions 
is a decreasing function of the mass; in fact, we find that log x , , ~  is linear in log M 
with slope :. This result is consistent with the belief that dr= 1.5 for anisotropic DLA. 

(ii) The tip is parabolic: when we plot ( y , - . ~ ~ ) ~  (where y c  is the contour, and  yo 
is the centreline of the dendrite) as a function of x , , ~  - x, we obtain a straight line with 
a correlation coefficient of 0.997. 

(iii) The sidebranches are non-periodic at any distance from the tip, with random 
variations in both phase and amplitude. To demonstrate this, we analysed our simula- 
tions in exactly the same fashion as the experimental patterns were analysed. Thus 

P I 

1- 
I I 

X t l p  

Figure 3. A plot of y, - y o  as a function of x , , ~  at a fixed distance z = 60 from the tip (i.e. 
at x = x ~ , ~  -60) (cf figure 3 of [5]). 
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we can plot the width y ,  of the dendrite at a fixed distance z from xIip as a function 
of xIip. The sidebranching is not periodic, the amplitude has the same intermittent 
character as the experimental graph (figure 3)  and the power spectrum reveals the 
presence of many characteristic frequencies. 

An open question concerns the microscopic origin of the sidebranch phenomenon. 
Some models predict that the sidebranch amplitude is periodic and the two sides of 
the dendrite should have symmetric sidebranching. Rather than supporting this predic- 
tion, our simulations (and the experiments of [ 5 ] )  support the possibility that side- 
branches arise from random concentration fluctuations, much as do the ‘tree structures’ 
that grow in DLA surface deposition [12]. Indeed, on a microscopic scale the side of 
the dendrite near the tip resembles an almost flat surface. Growth is small near the 
tip but increases exponentially with distance from the tip. Specifically, we analysed 
our simulations exactly as the NH,Br experiments. As in [ 5 ]  we found that the 
‘sidebranch amplitude’ (the square root of the area under the broad peak in the noise 
spectrum-cf our figure 3 and also figure 3 ( b )  of [ 5 ] )  decreases as the distance variable 
xtip - x decreases, and shows no sign of a threshold distance below which the amplitude 
is zero! Moreover, close to the tip the sidebranch amplitude appears (figure 4) to 
approach zero exponentially with xtip-x, just as found experimentally (figure 4 of [5]). 

/ 

/ 

/ 

1 / 

0 30 60 90 
z 

Figure 4. Depencence of the sidebranch amplitude (the square root of the area under the 
first peak of the power spectrum obtained from Fourier transformation of figure 3 )  on the 
distance z from the tip plotted semilogarithmically. The exponential increase is the same 
as in NH,Br (cf figure 4 of [SI). 

In summary, we have developed a hybrid model (of DLA and DBM boundary 
conditions) in which noise reduction is used to tune the effect of concentration 
fluctuations and anisotropy is introduced through the use of an underlying square 
lattice. The resulting patterns obtained resemble the experimental patterns of [ 51, both 
in their qualitative appearance (figure 1) and in the degree of quantitative detail studied 
experimentally (cf figures 2-4 with figures 1-4 of [5]). Sidebranching arises from the 
fact that an approximately flat interface in the DLA problem grows ‘trees’, which 
resemble ‘bumps’ in the presence of noise reduction; these compete for the incoming 
flux of random walkers. If one bump gets ahead, it has a further advantage for attracting 
the next NH4Br molecule. Thus some sidebranches get ahead while others do not. 
The characteristic spacing A between sidebranches scales with the dendrite mass with 
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the same exponent $ that characterises the growth of dendrite length (,ytip). Moreover, 
the patterns we obtain are reasonably independent of details of the simulation in that 
similar patterns are obtained when we vary the surface tension parameter u over a 
modest range; we can also alter the boundary conditions of the model with some 
latitude. The significance of the present findings is that the essential physics embodied 
in the noise-driven DLA model seems sufficient to describe anisotropic fluid displace- 
ment phenomena and dendritic growth patterns. 

We wish to thank R Blumberg-Selinger, P Devillard and, especially, A Dougherty and 
J P Gollub for very helpful discussions. 
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